Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum-field theory of squeezing in solitons

Not Accessible

Your library or personal account may give you access

Abstract

We develop a quantum theory of propagation in dispersive nonlinear media from the foundations of a correctly quantized field theory. Quantum fluctuations are handled by coherent-state expansions of localized field states. A stochastic nonlinear Schrödinger equation in the field variables is obtained for media with an intensity-dependent refractive index. This predicts squeezing for a continuous-wave input, over a wide bandwidth with anomalous dispersion, and over a gradually reducing bandwidth with normal dispersion. The equation is easily modified to include thermal-noise sources as well. For solitons, fluctuations are reduced over the soliton bandwidth. This leads to quantum solitons that have quadrature fluctuations less than the level of vacuum fluctuations. The complementary quadrature has a correspondingly increased fluctuation level.

© 1987 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantum theory of soliton squeezing: a linearized approach

H. A. Haus and Y. Lai
J. Opt. Soc. Am. B 7(3) 386-392 (1990)

Squeezing in the third-harmonic field generated by self-squeezed light

S. Kielich, R. Tanaś, and R. Zawodny
J. Opt. Soc. Am. B 4(10) 1627-1632 (1987)

Quantum theory of a second-order soliton based on a linearization approximation

Chen-Pang Yeang
J. Opt. Soc. Am. B 16(8) 1269-1279 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (73)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.