Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Reference pulse attack on continuous variable quantum key distribution with local local oscillator under trusted phase noise

Not Accessible

Your library or personal account may give you access

Abstract

We show that partially trusting the phase noise associated with estimation uncertainty in a local local oscillator continuous-variable quantum key distribution (LLO-CVQKD) system allows one to exchange higher secure key rates than in the case of untrusted phase noise. However, this opens a security loophole through the manipulation of the reference pulse amplitude. We label this as a “reference pulse attack,” which is applicable to all LLO-CVQKD systems if the phase noise is trusted. We show that, at the optimal reference pulse intensity level, Eve achieves unity attack efficiency at 23.8 km and 32.0 km while using lossless and 0.14 dB/km loss channels, respectively, for her attack. However, to maintain the performance enhancement from partially trusting the phase noise, countermeasures have been proposed. As a result, the LLO-CVQKD system with partially trusted phase noise owns a superior key rate at 20 km by an order 9.5, and an extended transmission distance by 45%, compared to the phase noise untrusted system.

© 2019 Optical Society of America

Full Article  |  PDF Article
More Like This
Practical security of the continuous-variable quantum key distribution with real local oscillators under phase attack

Biao Huang, Yongmei Huang, and Zhenming Peng
Opt. Express 27(15) 20621-20631 (2019)

Security analysis of practical continuous-variable quantum key distribution systems under laser seeding attack

Yi Zheng, Peng Huang, Anqi Huang, Jinye Peng, and Guihua Zeng
Opt. Express 27(19) 27369-27384 (2019)

High-speed Gaussian-modulated continuous-variable quantum key distribution with a local local oscillator based on pilot-tone-assisted phase compensation

Heng Wang, Yaodi Pi, Wei Huang, Yang Li, Yun Shao, Jie Yang, Jinlu Liu, Chenlin Zhang, Yichen Zhang, and Bingjie Xu
Opt. Express 28(22) 32882-32893 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved