Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hyperbolic metamaterial resonator–antenna scheme for large, broadband emission enhancement and single-photon collection

Not Accessible

Your library or personal account may give you access

Abstract

We model the broadband enhancement of single-photon emission from color centers in silicon-carbide nanocrystals coupled to a planar hyperbolic metamaterial (HMM) resonator. The design is based on positioning the single-photon emitters within the HMM resonator, which is made of a dielectric index-matched with silicon-carbide material. The broadband response results from the successive resonance peaks of the lossy Fabry–Perot structure modes arising within the high-index HMM cavity. To capture this broadband enhancement in the spontaneous emission of the single-photon emitter, we placed a simple gold-based cylindrical antenna on top of the HMM resonator. We analyzed the performance of this HMM-coupled antenna structure in terms of Purcell enhancement, quantum efficiency, collection efficiency, and overall collected photon rate (CPR). For perpendicular dipole orientation relative to the interface, the HMM-coupled antenna resonator leads to a significantly large spontaneous emission enhancement with a Purcell factor of the order of 250, along with a very high average total CPR of about 30 over a broad emission spectrum (700–1000 nm). The peak CPR increases to about 80 at 900 nm, corresponding to the emission of silicon-carbide quantum emitters. This is a state-of-the-art improvement considering previous computational designs have reported a maximum average CPR of 25 across the nitrogen vacancy center emission spectrum, 600–800 nm, with the highest value being about 40 at 650 nm.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced and directional single-photon emission in hyperbolic metamaterials

Ward D. Newman, Cristian L. Cortes, and Zubin Jacob
J. Opt. Soc. Am. B 30(4) 766-775 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved