Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effects of Mn doping on the structural, linear, and nonlinear optical properties of ZnO nanoparticles

Not Accessible

Your library or personal account may give you access

Abstract

In this study, the synthesis and characterization of undoped and Mn-doped ZnO nanoparticles with 2%, 5%, and 15% Mn/ZnO prepared using the hydrothermal method were reported. The structural, morphological, and chemical-bond properties of the Mn-doped ZnO nanoparticles were studied by using x-ray diffraction, field emission scanning electron microscopy (FESEM), energy dispersive x-ray analysis, and Fourier transform infrared spectroscopy analysis. X-ray diffraction patterns indicate that all of the samples have hexagonal wurtzite structures. The average diameters of the Mn-doped ZnO nanoparticles with different Mn/ZnO ratios were estimated to be about 20–38 nm from the FESEM images. The linear absorption coefficient and optical band gap energy of ZnO and Mn-doped ZnO nanoparticles were calculated using UV-Vis spectroscopy. A decrease in Eg was observed by an increase in Mn concentration. The nonlinear optical measurements have been performed using a nanosecond Nd:YAG pulse laser by the Z-scan technique. Both the undoped and Mn-doped ZnO nanoparticles exhibited a negative nonlinear optical index of refraction at 532 nm relating to the self-defocusing phenomenon. The nonlinear optical absorption of ZnO and Mn-doped ZnO nanoparticles is attributed to two-photon absorption combined with free carrier absorption. Furthermore, the third-order nonlinear susceptibility values of the undoped and Mn-doped ZnO nanoparticles varied between 1.22.5×109esu, depending on the Mn contents. The results suggest that a Mn dopant can improve the nonlinear optical properties of ZnO nanoparticles, and Mn-doped ZnO nanoparticles synthesized through the hydrothermal method may be a promising candidate for nonlinear optical applications at 532 nm.

© 2018 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhanced and tunable femtosecond nonlinear optical properties of pure and nickel-doped zinc oxide films

Shaimaa Mohamed, Fatma Abdel Samad, Mohamed Ashour, M. Sh. Abdel-wahab, Wael Z. Tawfik, Venugopal Rao Soma, and Tarek Mohamed
Appl. Opt. 61(25) 7283-7291 (2022)

Cobalt enhanced nonlinear optical properties and optical limiting of zinc oxide irradiated by femtosecond laser pulses

Abdullah Shehata, Wael Z. Tawfik, and Tarek Mohamed
J. Opt. Soc. Am. B 37(11) A1-A8 (2020)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.