Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Effective terahertz signal detection via electromagnetically induced transparency in graphene

Not Accessible

Your library or personal account may give you access

Abstract

We propose and analyze an efficient way to detect the terahertz (THz) signal in a magnetized graphene system via electromagnetically induced transparency. Such a scheme for THz signal detection mainly relies on the measurement of probe transmission spectra, in which the behaviors of a weak-probe transmission spectra can be controlled by switching on/off the THz signal radiation. Taking into account the tunable optical transition frequency between the Landau levels in graphene, our analytical results demonstrate that a broad frequency bandwidth of the THz signal radiation, ranging from 0.36 to 11.4 THz, can be inspected and modulated by means of an external magnetic field. As a consequence, the proposed magnetized graphene system performs a striking potential to utilize quantum interference in the design of optical solid-state devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
More Like This
Optomechanically induced transparency and Fano resonances in a graphene-based nanocavity

Asad Hafeez, Ziauddin, Muqaddar Abbas, and Sajid Qamar
J. Opt. Soc. Am. B 36(11) 3070-3078 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.