Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dispersion of nonlinearity in subwavelength waveguides: derivation of pulse propagation equation and frequency conversion effects

Not Accessible

Your library or personal account may give you access

Abstract

Description of pulse propagation in waveguides with subwavelength features and high refractive index contrasts requires an accurate account of the dispersion of nonlinearity due to the considerable mode profile variation with the wavelength. The corresponding model derived from asymptotic expansion of Maxwell equations contains a complicated network of interactions between different harmonics of the pulse, and therefore is not convenient for analysis. We demonstrate that this model can be reduced to the generalized nonlinear Schrödinger-type pulse propagation equation under the assumption of factorization of the four-frequency dependence of nonlinear coefficients. We analyze two different semiconductor waveguide geometries and find that the factorization works reasonably well within large wavelength windows. This allows us to utilize the pulse propagation equation for the description of a broadband signal evolution. We study the mechanism of modulational instability induced by the dispersion of nonlinearity and find that the power threshold predicted by the simple model with three interacting harmonics is effectively removed when using pulses, while the efficiency of this process grows for shorter pulse durations. Also, we identify the effects of geometrical and material dispersion of nonlinearity on spectral broadening of short pulses in semiconductor waveguides.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Spectral compression in supercontinuum generation through the higher-order nonlinear Schrödinger equation with non-Kerr terms using subnanojoule femtosecond pulses

Lucien Mandeng Mandeng, Alidou Mohamadou, Clément Tchawoua, and Hippolyte Tagwo
J. Opt. Soc. Am. B 30(9) 2555-2559 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved