Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optically defined plasmonic waveguides in crystalline semiconductors at optical frequencies

Not Accessible

Your library or personal account may give you access

Abstract

High intensity optical excitation to transform a crystalline semiconductor into a plasmonic metal at near-infrared wavelengths is theoretically investigated. A calculated intensity of 51.46GW/cm2 is sufficient to transform GaAs into metal at 1.55 μm to support plasmonic modes. A practical nanoscale plasmonic gap waveguide is designed based on the GaAs/GaN materials system, demonstrating the capability of obtaining plasmonic waveguiding by high intensity optical excitation. The propagation characteristics of the plasmonic gap mode in the designed waveguide can be dynamically tuned over a broad range of values by varying the intensity of the pump excitation using modest average powers between 15 and 75 mW.

© 2013 Optical Society of America

Full Article  |  PDF Article
More Like This
Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization

Alexandros Pitilakis and Emmanouil E. Kriezis
J. Opt. Soc. Am. B 30(7) 1954-1965 (2013)

Bandgap-confined large-mode waveguides for surface plasmon-polaritons

Carsten Reinhardt, Andrey B. Evlyukhin, Wei Cheng, Tobias Birr, Andrey Markov, Bora Ung, Maksim Skorobogatiy, and Boris N. Chichkov
J. Opt. Soc. Am. B 30(11) 2898-2905 (2013)

Parametric compensation of power losses in surface plasmon polaritons

A. T. Georges
J. Opt. Soc. Am. B 30(4) 904-908 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved