Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Guided surface waves over a free-space-chiral interface: applications to identification of optically active materials

Not Accessible

Your library or personal account may give you access

Abstract

At a free-space-chiral interface, the complete modal expansion of the electromagnetic fields consists of the radiation fields and lateral waves, associated with branch cut integrals as well as guided surface waves associated with the poles of the like- and cross-polarized elements of the reflection matrix. The cross-polarized surface waves, considered here in detail, are proportional to the chiral measure and contain the footprints of the optical activity of the material. Explicit expressions are desired for the residue contributions at the poles of the cross-polarized reflection coefficients in terms of the optical activity. Thus, measurements of the ratio of the cross- to like- polarized surface waves, which can be excited by electric or magnetic dipoles near the interface, can be used to identify the optically active materials.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved