Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly efficient and broadband light transmission in 90 ° nanophotonic wire waveguide bends

Not Accessible

Your library or personal account may give you access

Abstract

Nanophotonic wire silicon waveguides are indispensable components of integrated photonic circuits. Because of the inherent nature of these waveguides, such as narrow width and high-index contrast, corners with large bending radii are inevitable for efficient light transmission with small loss values, which, in turn, impedes the miniaturization of photonic components. To alleviate huge bending losses of a right angle waveguide, we designed a structure incorporating a two-dimensional (2D) photonic crystal, along with careful engineering of the individual cell at the corner. The low transmission efficiency of around 55% can be increased to 99% by implementing 2D analysis. The implementation of the computationally heavy three-dimensional finite-difference time domain method, on the other hand, produces power transmission efficiencies of approximately 52% and 92% for a regular wire bend and optimized structure, respectively. The method asserts compact size and guarantees broadband operation, which, in turn, may assist the implementation of optical interconnects to distribute effectively optical clock signals through the chip.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network

H. Kurt, I. H. Giden, and D. S. Citrin
Opt. Express 19(27) 26827-26838 (2011)

Efficient transmission mechanisms for waveguides with 90° bends in pillar photonic crystals

Masatoshi Tokushima, Jun Ushida, Akiko Gomyo, Masayuki Shirane, and Hirohito Yamada
J. Opt. Soc. Am. B 22(11) 2472-2479 (2005)

Photonic crystal-based bending waveguides for optical interconnections

Yao Zhang and Baojun Li
Opt. Express 14(12) 5723-5732 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved