Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles

Not Accessible

Your library or personal account may give you access

Abstract

The absorption of visible light by silver nanoparticles in two-dimensional arrays is investigated using a finite difference time domain algorithm. The results of the calculations show that for all shapes considered, spheres and triangular and rectangular prisms, there is reduced absorption when the particles become more densely packed within the array. The effect is seen to be more pronounced for rectangular and triangular prisms. Investigation of the electromagnetic field very close to the tip of the prism shows that the intensity is very sensitive to the separation between the nanoparticles, with the electric field increasing significantly as the spacing between the particles reduces.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays

Drew DeJarnette, D. Keith Roper, and Braden Harbin
J. Opt. Soc. Am. B 29(1) 88-100 (2012)

Localized field enhancements in two-dimensional V-groove metal arrays

Jonas Beermann, Sergey M. Novikov, Thomas Søndergaard, Jens Rafaelsen, Kjeld Pedersen, and Sergey I. Bozhevolnyi
J. Opt. Soc. Am. B 28(3) 372-378 (2011)

SERS enhancements via periodic arrays of gold nanoparticles on silver film structures

Jason M. Montgomery, Alexandra Imre, Ulrich Welp, Vitalii Vlasko-Vlasov, and Stephen K. Gray
Opt. Express 17(10) 8669-8675 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved