Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of photonic crystal defect modes by maximal symmetrization and reduction

Not Accessible

Your library or personal account may give you access

Abstract

We analyze in depth the eigenmodes symmetry of the vectorial electromagnetic wave equation with discrete symmetry, using a recently developed maximal symmetrization and reduction scheme leading to an automatic technique which decomposes every mode into its most fundamental internal geometrical components carrying independent symmetries, the ultimately reduced component functions (URCFs). Using URCFs, geometrical properties of photonic crystal defect modes can be analyzed in great details. In particular we analytically identify the kind of modes that display non-vanishing transverse electric or transverse magnetic amplitude at the cavity center in C2v, C3v, C4v, and C6v symmetries, and their degeneracies. We also build a postprocessing tool able to extract and identify URCFs out of the modes whether from experimental or numerical origin. In the latter case it is independent of the eigenmode computation method. In another variant the whole eigenmode computation can be systematically reduced to a minimal domain, without any need for applying specific non-trivial boundary conditions. The approach leads to strong analytical predictions which are illustrated for specific H1 and L3 cavities using the postprocessing tool on full three-dimensional computed modes. It not only constitutes an unprecedented check of the symmetry of the computational results, but it is shown to also deliver a deep geometrical and physical insight into the structure of the modes of photonic bandgap microcavities, which is of direct use for most modern applications in quantum photonics.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of photonic crystals with defects using coupled-mode theory

Vladislav R. Shteeman, Inna Nusinsky, Eli Kapon, and Amos A. Hardy
J. Opt. Soc. Am. B 26(6) 1248-1255 (2009)

Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab

O. Painter, J. Vučković, and A. Scherer
J. Opt. Soc. Am. B 16(2) 275-285 (1999)

Frequency domain analysis of guided resonances and polarization selectivity in photonic crystal membranes

Jan Kupec, Uğur Akçakoca, and Bernd Witzigmann
J. Opt. Soc. Am. B 28(1) 69-78 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (7)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (92)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.