Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Dirichlet-to-Neumann map method for analyzing periodic arrays of cylinders with oblique incident waves

Not Accessible

Your library or personal account may give you access

Abstract

For finite two-dimensional photonic crystals given as periodic arrays of circular cylinders in a square or triangular lattice, we develop an efficient method to compute the transmission and reflection spectra for oblique incident plane waves. The method relies on vector cylindrical wave expansions to approximate the Dirichlet-to-Neumann (DtN) map for each distinct unit cell and uses the DtN maps to derive an efficient method that works on the edges of the unit cells only. The DtN operator maps the two longitudinal field components to their derivatives on the boundary of the unit cell.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Dirichlet-to-Neumann map method for analyzing crossed arrays of circular cylinders

Yumao Wu and Ya Yan Lu
J. Opt. Soc. Am. B 26(11) 1984-1993 (2009)

Dirichlet-to-Neumann map method for analyzing hole arrays in a slab

Lijun Yuan and Ya Yan Lu
J. Opt. Soc. Am. B 27(12) 2568-2579 (2010)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (50)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved