Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions

Not Accessible

Your library or personal account may give you access

Abstract

A theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) under optically saturated conditions is presented. Expressions for the strength and shape of the Doppler-broadened NICE-OHMS signals are given for both the absorption and the dispersion phase, in the Voigt regime as well as in the Doppler limit. It is shown that Doppler-broadened NICE-OHMS is affected less by optical saturation than other cavity-enhanced techniques; in the Doppler limit the absorption signal decreases by a factor of (1+G±1)12, where G±1 is the degree of saturation for one of the frequency modulation sidebands, whereas the dispersion signal is virtually unaffected by optical saturation. In the Voigt regime both signals show additional dependence on optical saturation. The concept of saturation-insensitive detection is introduced and its conditions are identified.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry signals from optically saturated transitions under low pressure conditions

Aleksandra Foltynowicz, Weiguang Ma, Florian M. Schmidt, and Ove Axner
J. Opt. Soc. Am. B 25(7) 1156-1165 (2008)

Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised

Ove Axner, Weiguang Ma, and Aleksandra Foltynowicz
J. Opt. Soc. Am. B 25(7) 1166-1177 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (43)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved