Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Study on Z-scan characteristics for a large nonlinear phase shift

Not Accessible

Your library or personal account may give you access

Abstract

Using the Gaussian decomposition (GD) method, we studied the characteristics of a Z scan for a thin nonlinear medium with a large nonlinear phase shift induced by a pulsed laser. It has been verified that the GD method is still valid for analyses of Z-scan measurements with a large nonlinear phase shift and is better than some others, i.e., Fresnel–Kirchhoff diffraction and the aberration-free approximation model. By comparing the peak-to-valley configuration of Z-scan curves for a large nonlinear phase shift induced by a pulsed laser with that by a cw laser, we found that some peak-to-valley features of Z-scan curves appear as the aperture size or the light intensity increases in the case of a large nonlinear phase shift. Meanwhile, we carried out the Z-scan experiments of pure CS2 by a picosecond pulsed laser to verify the theoretical calculations in the case of a large nonlinear phase shift. The experimental results agree well with the theoretical calculations.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method

Bing Gu, Jing Chen, Ya-Xian Fan, Jianping Ding, and Hui-Tian Wang
J. Opt. Soc. Am. B 22(12) 2651-2659 (2005)

Z-scan theory based on a diffraction model

Baoli Yao, Liyong Ren, and Xun Hou
J. Opt. Soc. Am. B 20(6) 1290-1294 (2003)

Accurate determination of nonlinear refraction and nonlinear absorption by a single Z-scan method

Wei-Ping Zang, Jian-Guo Tian, Zhi-Bo Liu, Wen-Yuan Zhou, Feng Song, Chun-Ping Zhang, and Jing-Jun Xu
J. Opt. Soc. Am. B 21(2) 349-356 (2004)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved