Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830 nm

Not Accessible

Your library or personal account may give you access

Abstract

We present a cw single-frequency laser source with what is to our knowledge the largest emission range ever demonstrated, from the green to the mid-IR range. It employs a cw optical parametric oscillator with subsequent resonant frequency doubling. Typical output powers are 30–500 mW, with 160 mW at 580 nm. Mode-hop-free oscillation, high absolute frequency stability, 20-kHz-signal linewidth, and up to 38-GHz continuous tuning are demonstrated. Both PPLN and PPKTP are used as nonlinear materials, and their performance is compared.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Wide single-mode tuning of a 3.0–3.8-µm, 700-mW, continuous-wave Nd:YAG-pumped optical parametric oscillator based on periodically poled lithium niobate

M. van Herpen, S. te Lintel Hekkert, S. E. Bisson, and F. J. M. Harren
Opt. Lett. 27(8) 640-642 (2002)

Continuous-wave operation of a single-frequency optical parametric oscillator at 4–5 μm based on periodically poled LiNbO3

M. M. J. W. van Herpen, S. E. Bisson, and F. J. M. Harren
Opt. Lett. 28(24) 2497-2499 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved