Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers

Not Accessible

Your library or personal account may give you access

Abstract

The temporal behavior of beams diffracted by volume gratings in photopolymer thin films are measured and analyzed by solution of the diffusion equation for the monomer concentration inside the thin films. Two contributors to the refractive-index change that forms the volume gratings are assumed: One is the phase grating formed by modulation of the monomer concentration, and the other is the phase grating formed by modulation of the density of the polymeric materials. The phase grating that is due to monomer modulation is responsible for the initial fast rise and decay of the diffracted signal, and the phase grating that is due to modulation of density of the polymeric materials is responsible for the slowly rising and then steady signal. The temporal behavior of the diffracted beams is determined by the ratio of magnitudes of the incident beam intensity and the diffusion coefficient.

© 1999 Optical Society of America

Full Article  |  PDF Article
More Like This
First-harmonic diffusion model for holographic grating formation in photopolymers

Sabino Piazzolla and B. Keith Jenkins
J. Opt. Soc. Am. B 17(7) 1147-1157 (2000)

First-harmonic diffusion-based model applied to a polyvinyl-alcohol– acrylamide-based photopolymer

Cristian Neipp, Sergi Gallego, Manuel Ortuño, Andrés Márquez, Mariela L. Alvarez, Augusto Beléndez, and Inmaculada Pascual
J. Opt. Soc. Am. B 20(10) 2052-2060 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved