Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wave propagation in a guiding structure: one step beyond the paraxial approximation

Not Accessible

Your library or personal account may give you access

Abstract

Propagation of electromagnetic waves is considered for a medium with (x, y)-dependent locally isotropic dielectric and magnetic susceptibilities ik = (x, y)δik and μik = μ(x, y)δik, i.e., for a waveguide. In the paraxial approximation the polarization is disconnected from the propagation. We have developed a self-consistent theory of the postparaxial corrections. It allows, in particular, for the description of intrafiber geometrical rotation of polarization and its inverse phenomenon, the optical Magnus effect, which are both determined by the profile of refractive index n=μ only and constitute spin–orbit interaction of a photon. The birefringence splitting of linearly polarized modes or meridional rays on the other hand, turns out to be dependent on the gradients of impedance ρ=μ/, the quadrupole part of spin–orbit interaction. An important point of the theory is a transformation of field variables such that the z-propagation operator becomes Hermitian, in analogy with the transitions from a full relativistic Dirac equation to the Schrödinger–Pauli equation with spin–orbital corrections. A theoretical explanation is given for the phenomenon previously observed in experiment: preservation of circular polarization by an axially symmetric step-profile multimode fiber and depolarization of an input linearly polarized wave by the same fiber.

© 1996 Optical Society of America

Full Article  |  PDF Article
More Like This
Gaussian beam propagation beyond the paraxial approximation

G. P. Agrawal and D. N. Pattanayak
J. Opt. Soc. Am. 69(4) 575-578 (1979)

Propagation of light beams beyond the paraxial approximation

Takashi Takenaka, Mitsuhiro Yokota, and Otozo Fukumitsu
J. Opt. Soc. Am. A 2(6) 826-829 (1985)

Quantum kinetics of femtosecond four-wave mixing in semiconductors

L. Bányai, E. Reitsamer, D. B. Tran Thoai, and H. Haug
J. Opt. Soc. Am. B 13(6) 1278-1283 (1996)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.