Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Self-consistent approach to thermal effects in vertical-cavity surface-emitting lasers

Not Accessible

Your library or personal account may give you access

Abstract

A self-consistent theory for semiconductor lasers, in which plasma and lattice temperatures are treated as two independent variables, is presented. This theory consists of a set of coupled equations for the total carrier density, field amplitude, and plasma and lattice temperatures with the coupling that is due to phonon-carrier scattering and to the band gap’s dependence on lattice temperature. The self-consistent theory is then employed to study thermal effects in vertical-cavity surface-emitting lasers. We first investigate the plasma heating by solving the stationary (cw) solution of the set of equations with a fixed lattice temperature. The solution is studied systematically with respect to different parameters for both bulk and quantum-well media. Significant plasma-heating effects are found. These include the carrier-density dependence on pumping, decrease of input–output efficiency, dependence of the cw frequency shift on pumping, and a pronounced Pauli-blocking effect that is due to plasma heating. Furthermore, we solve the whole set of equations, including that for lattice temperature. We show that the output power is strongly saturated or switched off with an increase of pumping. Details of the saturation depend on the position of the cavity frequency in the gain spectrum and on the heat transfer rate from the lattice to the ambient.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Optical and thermal finite-difference time-domain model for passively mode-locked surface-emitting lasers

Mayank Bahl, Nicolae C. Panoiu, and Richard M. Osgood, Jr.
J. Opt. Soc. Am. B 26(8) 1558-1568 (2009)

Self-consistent real three-dimensional simulation of vertical-cavity surface-emitting lasers

Péter Nyakas, Gábor Varga, Zsolt Puskás, Naoki Hashizume, Tamás Kárpáti, Tamás Veszprémi, and György Zsombok
J. Opt. Soc. Am. B 23(9) 1761-1769 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (49)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved