Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Orientationally enhanced photorefractive effect in polymers

Not Accessible

Your library or personal account may give you access

Abstract

We present experimental data that show that the greatly improved performance of a new class of photorefractive polymers [see Donckers, et al., Opt. Lett. 18, 1044 ( 1993)] is too large to be explained by the simple electro-optic photorefractive effect alone. In these materials a photoconducting polymer host is doped with a small concentration of a sensitizer and a large concentration of a nonlinear optical chromophore that has orientational mobility at ambient temperatures. We present a theoretical model for a new orientational enhancement mechanism in which both the birefringence of the sample and the electro-optic coefficient are periodically modulated by the space-charge field itself. The predictions of this model for the size of the enhancement (which is greater than an order of magnitude in diffraction efficiency), the polarization anisotropy between p-polarized and s-polarized readout, and the presence of index modulation at twice the grating wave vector are in good agreement with the measured properties. This orientational enhancement mechanism should be important in any system in which the nonlinear optical chromophores have sufficient orientational mobility and dipole moment so as to be oriented by the space-charge field itself.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Photorefractive polymeric solitons supported by orientationally enhanced birefringent and electro-optic effects

Fang-Wen Sheu and Ming-Feng Shih
J. Opt. Soc. Am. B 18(6) 785-793 (2001)

Electroabsorption and orientationally enhanced electroabsorption grating in an azo-dye–doped photorefractive composite

Feng Wang, Zhijian Chen, Qihuang Gong, Yiwang Chen, and Huiying Chen
J. Opt. Soc. Am. B 16(3) 366-369 (1999)

High-performance polysiloxane-based photorefractive polymers with nonlinear optical azo, stilbene, and tolane chromophores

S. Schloter, U. Hofmann, P. Strohriegl, H.-W. Schmidt, and D. Haarer
J. Opt. Soc. Am. B 15(9) 2473-2475 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved